
Introducción a la Programación
Ejemplos de código en Python

Programa repetidor

Problema
Escribir un programa pida un texto (entrada) y lo imprimo tres veces en pantalla. Por ejemplo, para el input

Beetlejuice

el programa debe imprimir

Beetlejuice
Beetlejuice
Beetlejuice

Solución
El siguiente programa pide un texto (entrada) y lo imprime tres veces en pantalla:

x = input()
print(x)
print(x)
print(x)

De lo anterior, la primera línea solicita un input al usuario y guarda ese dato, que es un texto, en la variable
x. Luego, las tres líneas siguientes invocan a print, que es una función que imprime en pantalla, pasándole el
contenido de la variable x.

Teoría
Para abordar este problema, tenemos que saber:

• Usar  variables.  Las variables son lugares en memoria donde dejaremos datos.  Les colocaremos
nombres.

• Para crear una variable, simplemente realizamos una asignación. Ej: var = valor.

• La instrucción input() pide un texto al usuario (al ambiente de ejecución en verdad) y el valor suplido
es devuelto por input() a Python.

• La instrucción  print() imprime en pantalla (o en el ambiente de ejecución) lo que se le entregue
entre los paréntesis. Ejemplos:

◦ print(10) imprime el número entero 10 en pantalla,

◦ print(-5, "hola", True, 0.1) imprime el entero -5 (entero o  int), la cadena hola  (las cadenas o
strings, str, representan textos), el booleano True (verdadero) y el decimal 0.1 (decimal o float),

◦ print() imprime una línea vacía.



La fórmula aproximada

Problema
Escriba un programa que reciba un número decimal (float) y que imprima su evaluación en la siguiente
fórmula:

f (x )=( 1+ x /2+x 2/8
1−x /2+x 2/8 ).

Por ejemplo, para el input

.5

se genera el output

1.64

Otro ejemplo, para el input

-.39

se genera el output

0.6787512484426641

Solución
El siguiente código cumple con lo solicitado:

x = float( input() )
y = (1 + x/2 + x**2 / 8) / (1 - x/2 + x**2 / 8)
print(y)

La primera línea solicita el número decimal desde el input y lo guarda en la variable  x. La segunda línea
evalúa la fórmula, usando el valor guardado en x, y el resultado lo guarda en la variable y. Finalmente, la
tercera línea imprime el valor guardado en y.

Revisemos cómo se evalúa la fórmula. Como vemos, hay paréntesis; Python irá a determinar cuánto resulta
cada paréntesis antes de evaluar la división entre ellos.

Veamos cómo se evalúa cada expresión polinomial. Centrémonos en

1 + x/2 + x**2 / 8

Aquí vemos que hay una potencia (x**2), que es lo que primero se ejecuta, por prioridad. Luego siguen las
divisiones, en x/2 y x**2/8. Finalmente, siguen las adiciones.

Si pusiéramos paréntesis, la fórmula anterior se podría leer así:

1 + (x/2) + ((x**2)/8)

Aunque siendo más estricto, hay evaluación de izquierda a derecha entre operaciones de igual prioridad, así
que:

((1 + (x/2)) + ((x**2)/8))

Teoría
Para recibir números decimales, debemos usar código como

x = float( input() )



que piden un input de texto, lo convierten a decimal (punto flotante) con float y luego guardan ese valor en
una variable, que sería x en este caso.

Para escribir fórmulas. También debemos saber cómo evaluar operaciones matemáticas con Python. Al
respecto. las siguientes son las principales operaciones matemáticas que conciernen al curso:

10 + 25 # adición
10 – 7 # sustracción
10 * 9 # multiplicación
81 / 9 # división: siempre genera un número decimal!
81 // 9 # división entera: genera entero si divisor y dividendo son enteros
37 % 5 # resto: residuo de la división entera
5 ** 20 # potencia: aquí es 5 elevado a 20

También debemos saber que las operaciones tienen prioridad, o sea, se evalúan en orden preferente:
• La potencia tiene la más alta prioridad, por lo que se evalúa primero;
• Luego siguen *, /, //, % (se evalúan de izquierda a derecha);
• Luego siguen + y -.

Para asegurar que las operaciones se ejecuten en un orden que nosotros queramos, usamos 
paréntesis redondos. Por ejemplo:

( 10 + 5 ) / ( 10 – 5 )
resulta en 3, porque equivale a 15/5. Sin embargo

10 + 5 / 10 – 5
resulta en 4.5, porque 10 + 5/10 – 5 vale 10 + 0.5 – 5 = 4.5.
Los paréntesis son muy importantes en Python. Cada vez que se abre un paréntesis, hay que cerrarlo.



El menor de tres números

Problema
Escriba un programa que reciba tres números enteros y que luego imprima en pantalla el valor del menor de
éstos. Por ejemplo, para el input

100
40
75

el programa deberá imprimir

40

Por cierto, es posible que no haya números repetidos. Para el input

100
100
101

el programa deberá imprimir

100

Aquí no hubo sólo un mínimo, sino que hubieron dos. Su programa deberá funcionar bien en estos casos.

Solución 1
El código siguiente crea tres variables, a, b y c, con los números enteros recibidos y luego decide cuál es el
menor usando if-elif-elif:

a = int( input() )
b = int( input() )
c = int( input() )
if a <= b and a <= c:

print(a)
elif b <= a and b <= c: 

print(b)
elif c <= a and c <= b:

print(c)

Cuando evaluamos si x<=y and x<=z, estamos preguntando si x es el mínimo. Entonces, la estructura if-
elif-elif usada primero evalúa si a es mínimo, luego si b es mínimo y, finalmente, si c es mínimo.

Solución 2
Es posible mejorar el código anterior al simplificar las condiciones y usar una estructura if-elif-else:

a = int( input() )
b = int( input() )
c = int( input() )
if a <= b and a <= c:

print(a)
elif b <= c: 

print(b)
else:

print(c)



Hubo ahorro en las consultas. Los casos que se consideraron son:

• ¿Es a el mínimo? Si así es, imprimir a;

• Si a no es mínimo, ¿es b mínimo? Si así es, imprimir b;

• Si ni a ni b son mínimos, entonces imprimir c, pues es mínimo.

Solución 3
El código siguiente crea tres variables, a, b y c, con los números enteros recibidos y luego decide cuál es el
menor usando if-else:

a = int( input() )
b = int( input() )
c = int( input() )
if a <= b:

if a <= c:
print(a)

else:
print(c)

else:
if c <= a:

print(c)
else:

print(b)

Esta solución es menos directa que las anteriores, pero utiliza condiciones más sencillas, sin hacer uso de los
operadores booleanos como or, and y not.

Podemos describir la estructura de decisiones así:

• ¿Es a menor que b?

◦ Si así es, entonces el mínimo será el menor entre a y c. ¿Es a menor que c?

▪ Si así es, a es el mínimo;

▪ De lo contrario, c es el mínimo.

◦ Si a no es menor que b, entonces el mínimo está entre b y c. ¿Es b menor que c?

▪ Si así es, b es el mínimo;

▪ De lo contrario, c es el mínimo.

Teoría
Para recibir números enteros, debemos usar lineas de código como

x = int( input() )

que piden un input de texto, lo convierten a entero con int y luego guardan ese valor en una variable, que
sería x en este caso.

Para ejecutar código condicional. Lo siguiente a saber, es que hay que usar instrucciones para ejecución
condicional o alternativa para resolver este problema. Esto se logra haciendo uso de la instrucción if, cuya
sintaxis es como sigue:

if condicion:
bloque indentado a ejecutar si
la condición se cumplió

Aquí la condición se puede escribir usando comparadores:



• == para igualdad (¿valen lo mismo?),

• != para distinto,

• < y > para menor que y mayor que, respectivamente,

• <= y >= para menor o igual que y para mayor o igual que, respectivamente.

Además de lo anterior, es posible mezclar condiciones:

• and exige que ambas condiciones se cumplan (ej. que el valor de la variable num sea un número
positivo menore a 10 se puede escribir como num > 0 and num < 10),

• or exige que alguna de las condiciones se cumpla (ej. que num sea negativo o mayor a 100 se puede
escribir como num < 0 or num > 100).

Por último, es posible utilizar:

• not, que niega la condición siguiente (not x<y es equivalente a exigir x>=y).

Todas estas formas de comparar y combinar valores booleanos sirven para escribir condiciones.

Adicionalmente, podemos tener un bloque else (en inglés,  de lo contrario) para cuando la condición no se
cumple:

if condición:
bloque indentado a ejecutar si
la condición se cumplió

else:
bloque indentado a ejecutar si
la condición no se cumplió

Finalmente, es posible colocar bloques  elif (portmanteau de los términos  else e  if) para exigir condiciones
intermedias luego del if y antes del else, si es que hay uno:

if condición1:
bloque indentado a ejecutar si la condición se cumplió

elif condición2:
bloque indentado a ejecutar si la condición1 no se cumplió, pero
sí condición2

elif condición3:
bloque indentado a ejecutar si la condición1 y la condición2 no se
cumplieron, pero sí la condición3

else:
bloque indentado a ejecutar si la condición no se cumplió

Se pueden usar tantos bloques elif como se estime conveniente.

Es importante saber que:

• La  indentación  debe  ser  consistente,  nada  de  reemplazar  espacios  por  tabs  o  cambiarlos
arbitrariamente en la línea siguiente del bloque

• Cuando se deshace la indentación, Python asume que el bloque indentado ha terminado

• Es posible colocar nuevas instrucciones  if dentro del bloque indentado, lo que inicia bloques con
mayor indentación



Programa repetidor variable

Problema
Escriba un programa que pida un texto y luego un número entero (int), para luego repetir el texto tantas
veces como el número solicitado. Por ejemplo, para el input

izquierda, derecha
5

el programa debe imprimir

izquierda, derecha
izquierda, derecha
izquierda, derecha
izquierda, derecha
izquierda, derecha

Solución 1, for
El siguiente programa imprime el texto tantas veces como el número solicitado:

txt = input()
num = int( input() )
for i in range(num):

print( txt )

Explicando, la línea txt = input() pide un texto al usuario mediante la función input(), parar guardado en la
variable txt. La línea siguiente, num = int( input() ) pide un texto al usuario mediante la función input(),
luego convierte este texto a número entero mediante la función  int() y luego guarda el resultado en la
variable num.

Luego viene un bucle o repetición. La línea  for i in range(num): se puede traducir a "por cada valor de
range(num), que guardamos en la variable i, hacer:". Aquí, range(num) genera los números 0, 1, 2, ..., hasta
num.  La instrucción  for saca un valor de  range(num), lo guarda en la variable  i, luego ejecuta el  bloque
indentado que viene inmediatamente a continuación y vuelve a pedir un valor a  range(num), repitiendo el
proceso hasta que no queden más valores.

La siguiente línea es  el  bloque indentado.  Simplemente hace  print(  txt ),  omitiendo la  variable  i,  cuyo
contenido no nos interesa, pues sólo queremos imprimir txt.

Como for i in range(num) extraerá num valores distintos, print( txt ) se repetirá num veces.

Solución 2, while
El programa anterior también se puede escribir usando while:

txt = input()
num = int( input() )
i = 0
while i < num:

print( txt )
i = i+1

Aquí definimos i=0 para inicializar la variable i con el valor 0, como ocurriría con la primera iteración del for
de la solución anterior. Luego, se exige i<num y se realiza i=i+1 dentro del bloque indentado, lo que hará
que i asuma los valores 0, 1, 2, ..., num-1. Cuando i=num, entonces i<num no se cumplirá y se saldrá del
bucle.



Solución 3, while
Podemos también usar una lógica algo distinta para el while:

txt = input()
num = int( input() )
while num > 0:

print( txt )
num = num-1

Ahora, sólo la variable  num cambia. Esta variable irá decreciendo en 1 hasta llegar a 0, que es cuando
num>0 no se cumple, por lo que while deja de ejecutar el bloque indentado y sale. El bloque indentado se
repite num veces.

Teoría
Este problema exige saber de bucles o repeticiones en Python. A saber, hay de dos tipos.

while. Los bucles while tienen por notación:

while condición:
bloque indentado que se ejecutará
mientras la condición sea cierta

El bucle while es como un if. Sin embargo, en vez de ejecutar el bloque indentado cero o una vez, ahora se
puede ejecutar un número indeterminado de veces.

Ojo con la indentación, con la instrucción while y con el dos punto (:) al final de la línea.

for. El otro tipo de bucle es for, que obtiene un valor de un generador, lo asigna a una variable y ejecuta el
bloque indentado; esto lo repite hasta que el generador no emita más valores.

La sintaxis de la instrucción for es:

for var in generador:
bloque indentado que se ejecutará mientras el generador entre valores;
cada valor generado quedará en la variable var

Aquí el generador es range. Este generador funciona así:

• range(N) genera los números 0, 1, 2, ..., N-1;

• range(N,M) genera los números N, N+1, N+2, ..., M-1;

• range(N,M,k) genera los números N, N+k, N+2k, ..., Ñ < M.

Otros generadores:

• strings: generan los caracteres del texto;

• listas: generan los elementos de la lista;

• tuplas: generan los elementos de la tupla;

• set: generan los elementos del conjunto;

• dict: generan las llaves del diccionario;

• file: generan las líneas del archivo.



Promediar números

Problema
Escriba un programa que promedie los números decimales recibidos desde el input, hasta recibir la palabra
fin. Ejemplo, a partir del input

30.0
100
50
fin

el output debe ser

60.0

Solución
El siguiente código responde a este problema:

# 1. creamos las variables que usaremos para calcular el promedio
suma = 0
num = 0

# 2. procesamos el input y actualizamos las variables
x = input()
while x != "fin":

suma += float(x)
num += 1
x = input()

# 3. generamos la respuesta
if num > 0:

print( suma / num )
else:

print( 0.0 )

Aquí es muy importante entender la ubicación de las líneas que dicen  x=input(). Una antecede al bucle
while, la otra está al final de su bloque indentado.



Calcular el factorial

Problema
Para un número entero n, su factorial, denotado como n!, se define como

n! = 1,  para n < 1

n! = 1 · 2 · 3 · ... · n,   para n > 1

Escriba un programa que reciba un número entero de input y que imprima su factorial. Por ejemplo, para el
input

4

el programa deberá imprimir

24

Otro ejemplo, para el input

6

su programa deberá imprimir

720

Otro ejemplo más, para el input

-2

su programa deberá imprimir

1

Solución 1, for

n = int( input() )
if n <= 1:

print( 1 )
else:

fact = 1
for k in range(1,n+1):

fact = fact * k
print( fact )

Dos observaciones:

• Nunca deje ocurrir que fact=0;

• range(1,n+1) debe tener segundo término n+1, para que vaya desde 1 hasta n.

Solución 2, for
Este código aprovecha que range(a,b) no generará números si b <= a:

n = int( input() )
fact = 1
for k in range(1,n+1):

fact = fact * k
print( fact )



Solución 3, while
Ambas soluciones anteriores se pueden escribir con while. Por ejemplo, la Solución 2 quedaría como:

n = int( input() )
fact = 1
k = 1
while k < n+1:

fact = fact * k
k = k + 1

print( fact )

Solución 4, while
Podemos también usar un esquema de números en reversa para calcular la factorial:

n = int( input() )
fact = 1
while n>1:

fact = fact * n
n = n - 1

Notemos que n! = 1·2·3·...·(n-1)·n = n·(n-1)·...·3·2·1. La multiplicación es conmutativa: el orden de los factores
no altera el producto.



Similitud de parlamentarios

Problema
Representaremos las votaciones de dos parlamentarios, digamos, diputados, usando strings que compuestos
de caracteres "+", "-" y "A", para designar voto A Favor ("+"), En Contra ("-") y Abstención o Ausencia ("A").

Los símbolos anteriores, dentro de un string, denotan su comportamiento en la cámara durante un período
de tiempo. Para dos parlamentarios, sus strings podrían ser

+-A+
+-+-

Estos strings se leen así. Para el proyecto 1, ambos parlamentarios votaron A Favor. Para el proyecto 2,
ambos parlamentarios votaron En Contra. Para el proyecto 3, el primer parlamentario se abstuvo o ausentó,
mientras que el segundo votó A Favor. Para el proyecto 4, el primer parlamentario votó A Favor, mientras
que el segundo votó En Contra.

Escribir un programa que reciba dos strings de votaciones, para dos parlamentarios en un mismo periodo de
tiempo, y que calcule cuántas veces los parlamentarios hicieron lo mismo.

Ejemplo, para el input

+++++---A--
+---++-A++-

el output debe ser

4

puesto que votan A Favor (+) dos veces y En Contra (-) dos veces también.

Otro ejemplo, para el input

++++--+++A----
+++AAA-+AAA---

el output debe ser

8

puesto que votan A Favor (+) cuatro veces, En Contra (-) tres veces y se Ausentan o Abstienen (A) una vez.

Solución
Pese a la descripción del problema (que es realista, en cuanto métodos muy similares se usan en ciencia
política), la solución simplemente pasa por contar cuándo los strings son iguales en el mismo lugar. Por eso,
la solución es:

par1 = input()
par2 = input()
puntos = 0
for i in range( len( par1 ) ):

if par1[i] == par2[i]:
puntos = puntos + 1

print( puntos )



Teoría
Este problema exige entender de strings y colecciones similares, como listas y tuplas, que tienen largo y
posiciones.

Sea X un string, lista o tupla. Entonces:

• len(X) entrega el largo de X;

• X[i] nos entrega el valor en la posición i-ésima,

◦ si X es un string, X[i] es un caracter (ej. letra, número, espacio, etc.),

◦ si X es una lista, X[i] es el elemento guardado en ese lugar,

◦ si X es una tupla, X[i] es el elemento guardado en ese lugar;

• X[0] nos entrega el valor en la posición 0 (la primera);

• X[-1] nos entrega el valor en la última posición;

• X[-2] nos entrega el valor en la penúltima posición;

• X[-3] nos entrega el valor en la antepenúltima posición, etc.



Similitud de parlamentarios 2

Problema
Seguimos con el problema anterior, representando las votaciones de dos parlamentarios, usando strings que
compuestos de caracteres "+", "-" y "A", para designar voto A Favor ("+"), En Contra ("-") y Abstención o
Ausencia ("A").

Ahora, debemos calcular un puntaje distinto. Por proyecto,

• Si ambos votan A Favor (+) o En Contra (-), suman 1 punto

• Si votan opuesto, pierden 1 punto; y

• Si alguno se ausentó o abstuvo (A), no suman puntos.

Ejemplo, para el input

+++++---A--
+---++-A++-

el output debe ser

-1

puesto que votan igual (++, --) cuatro veces y votan opuesto (-+, +-) cinco veces, resultando en un total de 4
- 5 = -1 puntos.

Otro ejemplo, para el input

++++--+++A----
+++AAA-+AAA---

el output debe ser

6

puesto votan igual (++, --) siete veces y votan opuesto (-+, +-) una vez, lo que resulta en un neto de 7 - 1 = 6
puntos.

Solución 1
Para solucionar este problema, es necesario detectar todos los casos que interesan.:

par1 = input()
par2 = input()
puntos = 0
for i in range( len( par1 ) ):

if par1[i]=='+' and par2[i]=='+':
puntos = puntos + 1

if par1[i]=='-' and par2[i]=='-':
puntos = puntos + 1

if par1[i]=='+' and par2[i]=='-':
puntos = puntos - 1

if par1[i]=='-' and par2[i]=='+':
puntos = puntos - 1

print( puntos )

Notemos que aquí no necesitamos usar elif, porque los casos no tienen sobrelape.



Solución 2
Esta solución tiene una estructura de ifs más sencilla, porque se simplifican las comparaciones:

par1 = input()
par2 = input()
puntos = 0
for i in range( len( par1 ) ):

par = par1[i] + par2[i]
if par == "++" or par == "--":

puntos = puntos + 1
if par == "-+" or par == "+-":

puntos = puntos - 1
print( puntos )

Solución 3
Otra solución alternativa, ahora usando listas:

par1 = input()
par2 = input()
puntos = 0
for i in range( len( par1 ) ):

par = par1[i] + par2[i]
if par in [ "++", "--" ]:

puntos = puntos + 1
if par in [ "-+", "+-" ]:

puntos = puntos - 1
print( puntos )

Teoría
Concatenación. Como novedad, las Soluciones 2 y 3 hicieron uso de la concatenación, que es la suma que
se da entre strings. Por ejemplo:

• "hola" + "mundo" resulta en "holamundo",

• "" + "hola" + " " + "mun" + "do" resulta en "hola mundo",

• "dia" + 1 resulta en error.

A saber, no podemos concatenar strings con números u otro tipo de datos (listas, etc). Arroja una excepción,
porque no tiene sentido concatenar un string con otro tipo de dato.

Listas. Las listas son colecciones de valores que podemos definir como

L = [1, 2, 'hola', False]

y podemos acceder a sus elementos usando índices, por ejemplo

print( L[0] )

imprime 1, mientras que

print( L[1] )

imprime 2, y

print( L[-1] )

imprime False.



Pertenencia (in). La Solución 3 usó la instrucción in dentro de una condición lógica. El uso de in es como
sigue. Para x in y,

• Si y es una tupla o lista, x in y verifica si x es uno de los elementos de y, por ejemplo:

◦ 1 in [1, 2, 3, 4] evalúa a True,

◦ 10 in [1, 2, 3, 4] evalúa a False,

◦ 'Mario' in ['Mario', 'Luigi', 'Peach', 'Toad'] evalúa a True,

◦ 'Bowser' in ['Mario', 'Luigi', 'Peach', 'Toad'] evalúa a False;

• Si y es un string, x in y verifica si x es un substring de y, por ejemplo,

◦ "cuela" in "Escuela" retorna True,

◦ 'Goku' in 'Sengoku' evalúa a False (la 'G' evita el calce exacto aquí).

Por cierto, in es muy práctico con strings. Por ejemplo, podemos probar rápidamente:

• ¿Es el caracter x un dígito? x in '0123456789' (vale si len(x)==1);

• ¿Es el caracter x una vocal? x in 'aeiouAEIOU' (vale si len(x)==1).



Función que obtiene el coseno de los números de una lista

Problema
Defina la siguiente función, liscos(L), que reciba de parámetro una lista L de números y que retorne una
nueva lista, digamos M, cuyos elementos correspondan al coseno de cada número de la lista.

Por ejemplo, el código

L = [0, 1, 2, 0.5]
M = liscos(L)
print(M)

debe imprimir

[1.0, 0.5403023058681398, -0.4161468365471424, 0.8775825618903728]

Para evaluar el coseno de un número, use la función cos que viene en la biblioteca o módulo math.

Solución

import math

def liscos(L):
M = []
for x in L:

cos_x = math.cos( x )
M.append( cos_x )

return M

Teoría
Este problema requiere saber algunas cosas acerca de listas y de funciones que no hemos visto en esta guía.

Creación de una lista vacía. Como vemos, hay una línea que dice

M = []

Esta línea crea una lista sin elementos, o sea, vacía.

Alternativamente, el siguiente código también define M como una lista vacía:

M = list()

for sobre una lista. Podemos notar la línea que dice

for x in L:

Esta línea sirve para iterar sobre cada elemento de la lista L, dejando esos números en la variable x.

Usando append con una lista. Finalmente, podemos agrandar una lista usando  append (en castellano,
anexar). Esta función agrega un elemento al final de una lista. Su notación es así:

lista.append( valor )

Esto pondrá valor al final de la lista llamada lista.

La función append se usó para colocar los cosenos de los números en la lista contenida en la variable M:

M.append( cos_x )



Módulos y funciones. Para resolver este problema, es necesario saber cómo:

• Importar módulos,

• Usar funciones de un módulo importado,

• Definir funciones.

Importar y usar módulos. Es posible importar módulos (a veces llamados paquetes, bibliotecas o librerías)
para usar sus funciones, constantes, etc, en nuestros programas de Python. En este caso, debemos importar
math, lo que hacemos como:

import math

Es buena costumbre importar módulos  al principio de nuestros programas. En la solución al problema de
arriba, import math es la primera línea de código siguiendo esta buena costumbre.

Una vez importado el módulo, podemos usar sus funciones al escribir

nombre_modulo.nombre_funcion( parametros )

En este caso, debemos usar la función coseno, que llamamos con

math.cos(x)

como dice la solución.

Definir funciones. También podemos definir funciones propias. Esto lo hacemos como

def nombre_funcion( param1, param2, etc ):
bloque indentado de codigo que calcula lo que hace la funcion,
usando las variables param1, param2, etc, que se definen en la
llamada de función.
return resultado

Es muy importante la instrucción def, que inicia la definición (firma) de una función. Esa línea debe terminar
en dos puntos (:), porque le sigue un bloque indentado con el código que hace funcionar a la función (valga la
redundancia).

La instrucción return sirve para devolver el resultado al trozo de código que llama a la función. No solo eso,
además termina la ejecución de la función; si la función tiene código después del return, ese código no se
ejecutará.


	Introducción a la Programación Ejemplos de código en Python
	Programa repetidor
	Problema
	Solución
	Teoría

	La fórmula aproximada
	Problema
	Solución
	Teoría

	El menor de tres números
	Problema
	Solución 1
	Solución 2
	Solución 3
	Teoría

	Programa repetidor variable
	Problema
	Solución 1, for
	Solución 2, while
	Solución 3, while
	Teoría

	Promediar números
	Problema
	Solución

	Calcular el factorial
	Problema
	Solución 1, for
	Solución 2, for
	Solución 3, while
	Solución 4, while

	Similitud de parlamentarios
	Problema
	Solución
	Teoría

	Similitud de parlamentarios 2
	Problema
	Solución 1
	Solución 2
	Solución 3
	Teoría

	Función que obtiene el coseno de los números de una lista
	Problema
	Solución
	Teoría



