Introduccién a la Programacién
Ejemplos de c6digo en Python

Programa repetidor

Problema

Escribir un programa pida un texto (entrada) y lo imprimo tres veces en pantalla. Por ejemplo, para el input

| Beetlejuice i
| Beetlejuice !
| Beetlejuice |

Solucién
El siguiente programa pide un texto (entrada) y lo imprime tres veces en pantalla:

x = dnput()
print(x)
print(x)
print(x)

De lo anterior, la primera linea solicita un input al usuario y guarda ese dato, que es un texto, en la variable
x. Luego, las tres lineas siguientes invocan a print, que es una funcién que imprime en pantalla, paséandole el
contenido de la variable x.

Teoria

Para abordar este problema, tenemos que saber:

* Usar variables. Las variables son lugares en memoria donde dejaremos datos. Les colocaremos
nombres.

* Para crear una variable, simplemente realizamos una asignacion. Ej: var = valor.

* La instruccion input() pide un texto al usuario (al ambiente de ejecucion en verdad) y el valor suplido
es devuelto por input() a Python.

* La instruccion print() imprime en pantalla (o en el ambiente de ejecucién) lo que se le entregue
entre los paréntesis. Ejemplos:

o print(10) imprime el nimero entero 10 en pantalla,

o print(-5, "hola", True, 0.1) imprime el entero -5 (entero o int), la cadena hola (las cadenas o
strings, str, representan textos), el booleano True (verdadero) y el decimal 0.1 (decimal o float),

o print() imprime una linea vacia.

La férmula aproximada

Problema

Escriba un programa que reciba un nimero decimal (float) y que imprima su evaluacién en la siguiente
formula:

F(x)= 1+x/2+x22/8 .
1-x/2+x°/8

Por ejemplo, para el input
s
segenera el output)
P }
Otro ejemplo. para el input)
| -.39
segenera el output)
| o.e78751248a426641
Solucién
El siguiente cédigo cumple con lo solicitado:

i x = float(input()) i
by = (1 + x/2 + xxx2 [/ 8) [/ (1 - x/2 + x*x*x2 / 8) !
| print(y) ;

La primera linea solicita el nimero decimal desde el input y lo guarda en la variable x. La segunda linea
evalda la formula, usando el valor guardado en x, y el resultado lo guarda en la variable y. Finalmente, la
tercera linea imprime el valor guardado en y.

Revisemos cémo se evalta la formula. Como vemos, hay paréntesis; Python ird a determinar cuanto resulta
cada paréntesis antes de evaluar la divisién entre ellos.

Veamos cémo se evallia cada expresién polinomial. Centrémonos en
| I
|1+ x/2 + xx*x2 / 8 |

Aqui vemos que hay una potencia (x**2), que es lo que primero se ejecuta, por prioridad. Luego siguen las
divisiones, en x/2 y x**2/8. Finalmente, siguen las adiciones.

Si pusiéramos paréntesis, la formula anterior se podria leer asi:

L1+ (x/2) + ((x%%2)/8) |
Aunque siendo mas estricto, hay evaluacion de izquierda a derecha entre operaciones de igual prioridad, asi
que:

@+ (x/2)) + ((x**%2)/8)) |
Teoria

Para recibir nimeros decimales, debemos usar c6digo como

que piden un input de texto, lo convierten a decimal (punto flotante) con float y luego guardan ese valor en
una variable, que seria x en este caso.

Para escribir formulas. También debemos saber cémo evaluar operaciones matematicas con Python. Al
respecto. las siguientes son las principales operaciones matematicas que conciernen al curso:

10 + 25 # adicién ‘
110 - 7 # sustraccion |
1 10 * 9 # multiplicacion |
181/ 9 # divisién: siempre genera un nimero decimal!

' 81 // 9 # divisién entera: genera entero si divisor y dividendo son enteros

i 37 % 5 # resto: residuo de la division entera

| 5 x%x 20 # potencia: aqui es 5 elevado a 20

También debemos saber que las operaciones tienen prioridad, o sea, se evalGan en orden preferente:

* La potencia tiene la mas alta prioridad, por lo que se evaltua primero;

e Luego siguen *, /, //, % (se evaltan de izquierda a derecha);

e Luego siguen 4+ vy -.
Para asegurar que las operaciones se ejecuten en un orden que nosotros queramos, usamos
paréntesis redondos. Por ejemplo:

[T =

(10 +5) /(10 -5)

10 + 5 /10 - 5

!
|
|
!
. __ _______ __ ___ _____ _______________ ____________________ -

resulta en 4.5, porque 10 4+ 5/10 — 5 vale 10 + 0.5 — 5 = 4.5.
Los paréntesis son muy importantes en Python. Cada vez que se abre un paréntesis, hay que cerrarlo.

El menor de tres ndmeros

Problema

Escriba un programa que reciba tres nimeros enteros y que luego imprima en pantalla el valor del menor de
éstos. Por ejemplo, para el input

FTT T TTTTTTTTTTTTToTToommoooooooooooooooooooooooooooooooooooooo 1
| 100 i
| 40 |
BE |
. ___|
el programa deberd imprimir
e .
!

40 1
. __ __ ______ ___ _____ _______________ ___________________ -
Por cierto, es posible que no haya nimeros repetidos. Para el input

r 777 a
| 100 ‘
| 100 |
i 101 |
. ___|
el programa deberd imprimir
e .
!

| 100 %
. __ __ ______ ___ _____ _______________ ___________________ -

Aqui no hubo sélo un minimo, sino que hubieron dos. Su programa debera funcionar bien en estos casos.

Solucién 1

El cédigo siguiente crea tres variables, a, b y ¢, con los nUmeros enteros recibidos y luego decide cudl es el
menor usando if-elif-elif:

' a = int(input()) 3
' b = dint(dinput()) !
| ¢ = dnt(dnput()) |
' if a <= b and a <= c: |
i print(a)

| elif b <= a and b <= c: |
i print(b)

| elif c <= a and c <= b: |

Cuando evaluamos si x<=y and x<=z, estamos preguntando si x es el minimo. Entonces, la estructura if-
elif-elif usada primero evalGa si a es minimo, luego si b es minimo vy, finalmente, si ¢ es minimo.

Solucién 2

Es posible mejorar el cédigo anterior al simplificar las condiciones y usar una estructura if-elif-else:

Q
1

i int(dinput()) i
i int(input()) !
i int(dinput()) |
' if a <= b and a <= c: |
i print(a)

! 1

0 T
I

elif b <= c:
print(b)

else:
print(c)

Hubo ahorro en las consultas. Los casos que se consideraron son:
* (Es a el minimo? Si asi es, imprimir a;
* Siano es minimo, ¢(es b minimo? Si asi es, imprimir b;

* Siniani bson minimos, entonces imprimir ¢, pues es minimo.

Solucidén 3

El codigo siguiente crea tres variables, a, b y ¢, con los nimeros enteros recibidos y luego decide cudl es el
menor usando if-else:

a = int(dinput())

b = int(input()) 1
¢ = dnt(dinput()) |
| if a <= b: |
| if a <= c:

i print(a)

| else:

i print(c)

| else: |
i if ¢ <= a:

| print(c)

| else:

i print(b) |

Esta solucién es menos directa que las anteriores, pero utiliza condiciones mas sencillas, sin hacer uso de los
operadores booleanos como or, and y not.

Podemos describir la estructura de decisiones asi:
* ¢(Es a menor que b?
o Sjasi es, entonces el minimo serd el menor entre a y c. (Es a menor que c?
= Siasi es, a es el minimo;
= De lo contrario, c es el minimo.
© Si ano es menor que b, entonces el minimo esté entre b y c. ¢éEs b menor que ¢?
= Siasies, b esel mnimo;

= De lo contrario, ¢ es el minimo.

Teoria

Para recibir nameros enteros, debemos usar lineas de c6digo como
e .
!

| x = dnt(dinput()) §
. __ _______ ___ _____ _______________ ___________________ -

que piden un input de texto, lo convierten a entero con int y luego guardan ese valor en una variable, que
serfa x en este caso.

Para ejecutar codigo condicional. Lo siguiente a saber, es que hay que usar instrucciones para ejecucién
condicional o alternativa para resolver este problema. Esto se logra haciendo uso de la instruccion if, cuya
sintaxis es como sigue:

° . . |
if condicion: i
bloque indentado a ejecutar si
. . 7 . 7 !
la condicidon se cumplid
|

-
|
|
!
|
|
!
|
|
!

Aqui la condicién se puede escribir usando comparadores:

* == para igualdad (évalen lo mismo?),

* != para distinto,

* <y > para menor que y mayor que, respectivamente,

* <=y >= para menor o igual que y para mayor o igual que, respectivamente.
Ademads de lo anterior, es posible mezclar condiciones:

* and exige que ambas condiciones se cumplan (ej. que el valor de la variable num sea un nimero
positivo menore a 10 se puede escribir como num > 0 and num < 10),

* or exige que alguna de las condiciones se cumpla (ej. que num sea negativo o mayor a 100 se puede
escribir como num < 0 or num > 100).

Por dltimo, es posible utilizar:
* not, que niega la condicién siguiente (not x<y es equivalente a exigir x>=y).
Todas estas formas de comparar y combinar valores booleanos sirven para escribir condiciones.

Adicionalmente, podemos tener un bloque else (en inglés, de lo contrario) para cuando la condicion no se
cumple:

if condicion:
bloque indentado a ejecutar si
la condicion se cumpliéd

else:
bloque indentado a ejecutar si
la condicidén no se cumplid

Finalmente, es posible colocar bloques elif (portmanteau de los términos else e if) para exigir condiciones
intermedias luego del if y antes del else, si es que hay uno:

if condiciodnl:
bloque indentado a ejecutar si la condicién se cumplid

elif condiciodn2:
bloque indentado a ejecutar si la condiciénl no se cumplid, pero
si condicién2

elif condicidén3:
bloque indentado a ejecutar si la condicidénl y la condicidén2 no se
cumplieron, pero si la condicién3

else:
bloque indentado a ejecutar si la condicién no se cumpliéd

Se pueden usar tantos bloques elif como se estime conveniente.
Es importante saber que:

* La indentacién debe ser consistente, nada de reemplazar espacios por tabs o cambiarlos
arbitrariamente en la linea siguiente del bloque

* Cuando se deshace la indentacion, Python asume que el bloque indentado ha terminado

* Es posible colocar nuevas instrucciones if dentro del bloque indentado, lo que inicia bloques con
mayor indentacion

Programa repetidor variable

Problema

Escriba un programa que pida un texto y luego un nimero entero (int), para luego repetir el texto tantas
veces como el nimero solicitado. Por ejemplo, para el input

i izquierda, derecha i
| izquierda, derecha |
| izquierda, derecha |
| izquierda, derecha |
| izquierda, derecha |

Solucién 1, for
El siguiente programa imprime el texto tantas veces como el nimero solicitado:

txt = dinput()

int(dinput())

for i in range(num):
print(txt)

)
=
3

1l

Explicando, la linea txt = input() pide un texto al usuario mediante la funcién input(), parar guardado en la
variable txt. La linea siguiente, num = int(input()) pide un texto al usuario mediante la funciéon input(),
luego convierte este texto a nimero entero mediante la funcién int() y luego guarda el resultado en la
variable num.

Luego viene un bucle o repeticion. La linea for i in range(num): se puede traducir a "por cada valor de
range(num), que guardamos en la variable i, hacer:". Aqui, range(num) genera los nimeros 0, 1, 2, ..., hasta
num. La instruccién for saca un valor de range(num), lo guarda en la variable i, luego ejecuta el bloque
indentado que viene inmediatamente a continuacién y vuelve a pedir un valor a range(num), repitiendo el
proceso hasta que no queden mas valores.

La siguiente linea es el blogue indentado. Simplemente hace print(txt), omitiendo la variable i, cuyo
contenido no nos interesa, pues s6lo queremos imprimir txt.

Como for i in range(num) extraerd num valores distintos, print(txt) se repetird num veces.

Solucién 2, while
El programa anterior también se puede escribir usando while:

txt = dinput()
num = int(input())

while i < num:
print(txt)
i= G+l

Aqui definimos i=0 para inicializar la variable i con el valor 0, como ocurriria con la primera iteracién del for
de la solucién anterior. Luego, se exige i<num y se realiza i=i+1 dentro del bloque indentado, lo que hara
que i asuma los valores 0, 1, 2, ..., num-1. Cuando i=num, entonces i<num no se cumplird y se saldra del
bucle.

Solucién 3, while
Podemos también usar una légica algo distinta para el while:

txt = input() 3
u int(input()) i
while num > 0: i

- 3
1l

print(txt)
num = num-1

Ahora, sélo la variable num cambia. Esta variable ird decreciendo en 1 hasta llegar a 0, que es cuando
num>0 no se cumple, por lo que while deja de ejecutar el bloque indentado y sale. El bloque indentado se
repite num veces.

Teoria

Este problema exige saber de bucles o repeticiones en Python. A saber, hay de dos tipos.

while. Los bucles while tienen por notacién:

| , 1
' while condicién: |
i bloque indentado que se ejecutara
. . . 7 . I
3 mientras la condicidén sea cierta
|

El bucle while es como un if. Sin embargo, en vez de ejecutar el bloque indentado cero o una vez, ahora se
puede ejecutar un nimero indeterminado de veces.

Ojo con la indentacion, con la instrucciéon while y con el dos punto (:) al final de la linea.

for. El otro tipo de bucle es for, que obtiene un valor de un generador, lo asigna a una variable y ejecuta el
bloque indentado; esto lo repite hasta que el generador no emita mas valores.

La sintaxis de la instruccién for es:

!]
. for var in generadors: |
i bloque indentado que se ejecutarda mientras el generador entre valores;
z . !
3 cada valor generado quedard en la variable var
|

Aqui el generador es range. Este generador funciona asi:

* range(N) genera los nimeros 0, 1, 2, ..., N-1;

* range(N,M) genera los nimeros N, N+1, N+2, ..., M-1;

* range(N,M,k) genera los nmeros N, N+k, N+2k, ..., N < M.
Otros generadores:

* strings: generan los caracteres del texto;

* listas: generan los elementos de la lista;

* tuplas: generan los elementos de la tupla;

* set: generan los elementos del conjunto;

* dict: generan las llaves del diccionario;

* file: generan las lineas del archivo.

Promediar nimeros

Problema

Escriba un programa que promedie los nimeros decimales recibidos desde el input, hasta recibir la palabra
fin. Ejemplo, a partir del input

FTToTmoomooooooooooooooooooooooooooooooooooooooo 1
| 30.0 |
I 100 |
| 50 |
| fin
. __ _______________ __ __]
el output debe ser

r 777 a
| 60.0
L -
Solucién

El siguiente cédigo responde a este problema:
77 .

suma = 0

2. procesamos el input y actualizamos las variables
X = dnput()
while x = "fin":

suma += float(x)

num += 1

X = dnput()

3. generamos la respuesta
if num > 0:

print(suma / num)
else:

print(0.0)

Aqui es muy importante entender la ubicacién de las lineas que dicen x=input(). Una antecede al bucle
while, la otra estd al final de su bloque indentado.

Calcular el factorial

Problema

Para un nimero entero n, su factorial, denotado como n!, se define como
n'=1 paranx<]
nN=1-2-3-..-n, paran>]|

Escriba un programa que reciba un nimero entero de input y que imprima su factorial. Por ejemplo, para el
input

4

el programa debera imprimir

24

Otro ejemplo, para el input

6

su programa debera imprimir

720

Otro ejemplo mas, para el input

-2

su programa debera imprimir

1

Solucién 1, for

n = int(input())

if n <= 1:
print(1)
else:
fact = 1

for k in range(l,n+1):
fact = fact * k
print(fact)

Dos observaciones:
* Nunca deje ocurrir que fact=0;

* range(l,n+1) debe tener segundo término n+1, para que vaya desde 1 hasta n.

Solucién 2, for

Este codigo aprovecha que range(a,b) no generard nimeros si b <= a:

n = int(input())

fact = 1

for k in range(l,n+1):
fact = fact * k

print(fact)

Solucién 3, while
Ambas soluciones anteriores se pueden escribir con while. Por ejemplo, la Solucién 2 quedaria como:

i'n = dnt(input()) i
I fact = 1 !
tk =1 |
| while k < n+1: |
i fact = fact x k

i k=k+1 |
I print(fact) |

Solucién 4, while
Podemos también usar un esquema de nimeros en reversa para calcular la factorial:

f'n = int(dinput()) i
I fact = 1 |
! while n>1: |
i fact = fact * n

i n=n-1 !

Notemos que n! = 1:2-3-...-(n-1)-n = n-(n-1)-...-3-2-1. La multiplicacién es conmutativa: el orden de los factores
no altera el producto.

Similitud de parlamentarios

Problema

Representaremos las votaciones de dos parlamentarios, digamos, diputados, usando strings que compuestos
de caracteres "+", "-" y "A", para designar voto A Favor ("+"), En Contra ("-") y Abstencién o Ausencia ("A").

Los simbolos anteriores, dentro de un string, denotan su comportamiento en la cdAmara durante un periodo
de tiempo. Para dos parlamentarios, sus strings podrian ser

Estos strings se leen asi. Para el proyecto 1, ambos parlamentarios votaron A Favor. Para el proyecto 2,
ambos parlamentarios votaron En Contra. Para el proyecto 3, el primer parlamentario se abstuvo o ausentd,
mientras que el segundo votdé A Favor. Para el proyecto 4, el primer parlamentario votd A Favor, mientras
que el segundo vot6é En Contra.

Escribir un programa que reciba dos strings de votaciones, para dos parlamentarios en un mismo periodo de
tiempo, y que calcule cuantas veces los parlamentarios hicieron lo mismo.

Ejemplo, para el input

prraruESs
i +———++-A++— i
el output debe ser T
puesto que votan A Favor (+) dos veces y En Contra () dos veces tambien.)
Otro ejemplo, para el input

pranweEEEe
| +++AAA-+AAA-—- |
el output debe ser T

puesto que votan A Favor (+) cuatro veces, En Contra (-) tres veces y se Ausentan o Abstienen (A) una vez.

Solucién

Pese a la descripcion del problema (que es realista, en cuanto métodos muy similares se usan en ciencia
politica), la soluciéon simplemente pasa por contar cuando los strings son iguales en el mismo lugar. Por eso,
la solucién es:

parl = dinput()

©
Q
)
N
I
-
=)
©
c
(o
—~
~

| |
% puntos = 0 %
i for i 1in range(len(parl)): |
i if parl[i] == par2[i]:

| puntos = puntos + 1

| print(puntos) |

Teoria

Este problema exige entender de strings y colecciones similares, como listas y tuplas, que tienen largo y
posiciones.

Sea X un string, lista o tupla. Entonces:
* len(X) entrega el largo de X;
* X[i] nos entrega el valor en la posicion i-ésima,
© si X es un string, X[i] es un caracter (ej. letra, nimero, espacio, etc.),
© si X es una lista, X[i] es el elemento guardado en ese lugar,

© si X es una tupla, X[i] es el elemento guardado en ese lugar;

X[0] nos entrega el valor en la posicién O (la primera);

X[-1] nos entrega el valor en la Ultima posicion;

X[-2] nos entrega el valor en la penultima posicion;

X[-3] nos entrega el valor en la antepentltima posicion, etc.

Similitud de parlamentarios 2

Problema

Seguimos con el problema anterior, representando las votaciones de dos parlamentarios, usando strings que
compuestos de caracteres "+", "-" y "A", para designar voto A Favor ("+"), En Contra ("-") y Abstencion o
Ausencia ("A").

Ahora, debemos calcular un puntaje distinto. Por proyecto,
* Siambos votan A Favor (+) o En Contra (-), suman 1 punto
* Si votan opuesto, pierden 1 punto; y
* Sialguno se ausentd o abstuvo (A), no suman puntos.

Ejemplo, para el input

T i
i +Httt———A—— !
|
| +———++—-A++-— :
! [
e §
el output debe ser
LT T T T T T T T T T T e 1
P -1 i
| |
. __ _______ ___ _____ __________________________________ -

puesto que votan igual (++, --) cuatro veces y votan opuesto (-+, +-) cinco veces, resultando en un total de 4
- 5 = -1 puntos.

Otro ejemplo, para el input

r ’’ a
i FHtt——t A ——— !
I
| +++AAA-+AAA-—- :
L
el output debe ser
e 1
o J

puesto votan igual (++, --) siete veces y votan opuesto (-+, +-) una vez, lo que resulta en un netode 7 - 1= 6
puntos.

Solucién 1
Para solucionar este problema, es necesario detectar todos los casos que interesan.:

| parl = dnput()

| par2 = ‘input()

| puntos = 0

i for i in range(len(parl)):

i if parl[i]=='+' and par2[i]=='+":
| puntos = puntos + 1
i if parl[i]=='-' and par2[i]=
|

|

|

puntos = puntos + 1
if parl[i]=='+' and par2[i]=='-":

puntos = puntos - 1
if parl[i]=='-"' and par2[i]=='"+":
puntos = puntos - 1

print(puntos)

Notemos que aqui no necesitamos usar elif, porque los casos no tienen sobrelape.

Solucidén 2

Esta solucién tiene una estructura de ifs mas sencilla, porque se simplifican las comparaciones:

| parl = dnput() %
| par2 = qdinput() |
| puntos = 0 |
i for i in range(len(parl)): i
i par = parl[i] + par2[i]

i if par == 44" o par == n__n i
i puntos = puntos + 1

| if par == "-+" or par == "+-":

| puntos = puntos - 1

| print(puntos) |
Solucién 3

Otra solucién alternativa, ahora usando listas:

©
Q
)
N
I
-
=)
©
c
(o
—~
~

puntos = 0
for i in range(len(parl)):
par = parl[i] + par2[i]
_i.F par -in [ll++ll, n__n]:
puntos = puntos + 1
i.F par -in [ll+ll, ll+_ll]:
puntos = puntos - 1
print(puntos)

Teoria

Concatenacién. Como novedad, las Soluciones 2 y 3 hicieron uso de la concatenacién, que es la suma que
se da entre strings. Por ejemplo:

¢ "hola" + "mundo" resulta en "holamundo",
e " 4 "hola" + " " + "mun" + "do" resulta en "hola mundo”,
e "dia" + 1 resulta en error.

A saber, no podemos concatenar strings con nimeros u otro tipo de datos (listas, etc). Arroja una excepcion,
porque no tiene sentido concatenar un string con otro tipo de dato.

Listas. Las listas son colecciones de valores que podemos definir como

L=11, 2, 'hola', Falsel
y podemos acceder a sus lementos usando indices. por siemplo ;
(print(L[O]) ?
imprime I, mientras que)
Cprint(LI)
imprime2,y)
print(L-uD

imprime False.

Pertenencia (in). La Solucion 3 usé la instruccién in dentro de una condicion légica. El uso de in es como
sigue. Para x in y,

Siy es una tupla o lista, x in y verifica si x es uno de los elementos de y, por ejemplo:
o 1inl[l, 2, 3, 4] evalGa a True,
© 10in[l, 2, 3, 4] evalGa a False,
© 'Mario’ in ['Mario’, 'Luigi', 'Peach’, 'Toad'] evalGa a True,
© 'Bowser' in ['Mario’, 'Luigi’, 'Peach’, 'Toad'] evalGa a False;
* Siyesunstring, x in y verifica si x es un substring de y, por ejemplo,
© *"cuela" in "Escuela" retorna True,
© 'Goku' in 'Sengoku’ evalia a False (la 'G' evita el calce exacto aqui).
Por cierto, in es muy practico con strings. Por ejemplo, podemos probar rapidamente:
* (Es el caracter x un digito? x in '0123456789’ (vale si len(x)==1);

e (Es el caracter x una vocal? x in 'aiouZEIOU’ (vale si len(x)==1).

Funcion que obtiene el coseno de los nimeros de una lista

Problema

Defina la siguiente funcién, liscos(L), que reciba de pardmetro una lista L de nimeros y que
nueva lista, digamos M, cuyos elementos correspondan al coseno de cada nimero de la lista.

Por ejemplo, el codigo

'L =1[0, 1, 2, 0.5]
i M = liscos(L)
| print(M)

Para evaluar el coseno de un nimero, use la funcién cos que viene en la biblioteca o0 mdédulo math.

Solucién

import math

|

| def liscos(L):

i M = []

i for x in L:

i cos_x = math.cos(x)
| M.append(cos_x)

3 return M

Teoria

Este problema requiere saber algunas cosas acerca de listas y de funciones que no hemos visto en esta guia.

Creacion de una lista vacia. Como vemos, hay una linea que dice

Esta linea crea una lista sin elementos, o sea, vacia.

Alternativamente, el siguiente cédigo también define M como una lista vacia:

Esta linea sirve para iterar sobre cada elemento de la lista L, dejando esos nimeros en la variable x.

retorne una

,,,,,,,,,,,,,,,,,,,

Usando append con una lista. Finalmente, podemos agrandar una lista usando append (en castellano,

anexar). Esta funcién agrega un elemento al final de una lista. Su notacién es asi:

Esto pondra valor al final de la lista llamada lista.

La funcién append se us6 para colocar los cosenos de los nimeros en la lista contenida en la variable M:

I e e e e e e e e e e e
!
|
|
!

M.append(cos_x)

Médulos y funciones. Para resolver este problema, es necesario saber cémo:
* Importar médulos,
* Usar funciones de un médulo importado,
* Definir funciones.

Importar y usar modulos. Es posible importar médulos (a veces llamados paquetes, bibliotecas o librerias)
para usar sus funciones, constantes, etc, en nuestros programas de Python. En este caso, debemos importar
math, lo que hacemos como:

% import math %
L

Es buena costumbre importar médulos al principio de nuestros programas. En la solucién al problema de
arriba, import math es la primera linea de c6digo siguiendo esta buena costumbre.

Una vez importado el médulo, podemos usar sus funciones al escribir

R O R A R R T TR RRREEII=. .
! |
| nombre_modulo.nombre_funcion(parametros) |
. __ _______ ___ _____ _______________ ___________________ -
En este caso, debemos usar la funcién coseno, que llamamos con

R R R R R RERREEII=. .
! |
| math.cos(x) 3
. __ _______ ___ _____ _______________ ___________________ -

como dice la solucion.

Definir funciones. También podemos definir funciones propias. Esto lo hacemos como

i def nombre_funcion(paraml, param2, etc): i
i bloque indentado de codigo que calcula lo que hace la funcion,

i usando las variables paraml, param2, etc, que se definen en la

| 1lamada de funcién.

i return resultado

Es muy importante la instruccion def, que inicia la definicion (firma) de una funcién. Esa linea debe terminar
en dos puntos (:), porque le sigue un bloque indentado con el cédigo que hace funcionar a la funciéon (valga la
redundancia).

La instruccién return sirve para devolver el resultado al trozo de cédigo que llama a la funcién. No solo eso,
ademas termina la ejecucién de la funcién; si la funcién tiene coédigo después del return, ese cédigo no se
ejecutara.

	Introducción a la Programación Ejemplos de código en Python
	Programa repetidor
	Problema
	Solución
	Teoría

	La fórmula aproximada
	Problema
	Solución
	Teoría

	El menor de tres números
	Problema
	Solución 1
	Solución 2
	Solución 3
	Teoría

	Programa repetidor variable
	Problema
	Solución 1, for
	Solución 2, while
	Solución 3, while
	Teoría

	Promediar números
	Problema
	Solución

	Calcular el factorial
	Problema
	Solución 1, for
	Solución 2, for
	Solución 3, while
	Solución 4, while

	Similitud de parlamentarios
	Problema
	Solución
	Teoría

	Similitud de parlamentarios 2
	Problema
	Solución 1
	Solución 2
	Solución 3
	Teoría

	Función que obtiene el coseno de los números de una lista
	Problema
	Solución
	Teoría

